跳到主要内容

5. langchain中的LLM模型使用介绍

简介

构建在大语言模型基础上的应用通常有两种,第一种叫做text completion,也就是一问一答的模式,输入是text,输出也是text。这种模型下应用并不会记忆之前的问题内容,每一个问题都是最新的。通常用来做知识库。

还有一种是类似聊天机器人这种会话模式,也叫Chat models。这种模式下输入是一个Chat Messages的列表。从而可以保存上下文信息,让模型的回复更加真实。

实际上Chat models的底层还是LLMs,只不过在调用方式上有些变化。

简单使用LLMs

什么是LLMs呢?LLMs是Large Language Models的简称,也就是我们常说的大语言模型。

对于langchain来说,它本身并不提供大语言模型,它只是一个中间的粘合层,提供了统一的接口,方便我们对接底层的各种LLMs模型。

langchain除了可以对接OpenAI之外,还可以对接Cohere, Hugging Face等其他的大语言模型。

比如下面是openAI的使用:

from langchain.llms import OpenAI

llm = OpenAI(openai_api_key="...")

接下来就可以调用llm的方法来进行text completion了。

一般来说有两种方式。第一种方式就是直接输出:

llm("给我写首诗")

还有一种方式调用他的generate方法:

llm_result = llm.generate(["给我唱首歌", "给我写首诗"])

这种方式可以传入一个数组,用来生成比较复杂的结果。

langchain支持的LLM

现在大语言模型可谓是蓬勃发展,一不留神就可能出一个新的大语言模型。

就目前而言,基本的国外主流模型langchain都是支持的。

比如:openai,azure openai,AmazonAPI,Hugging Face Hub等等。数目繁多,功能齐全,你想要的他全都有,你没想到的他也有。

那么有小伙伴可能要问题了,langchain支不支持国产的大语言模型呢?

答案是肯定的,但并不是直接的。

如果你发现langchain并没有你想要的llm,那么你可以尝试进行自定义。

langchain为我们提供了一个类叫做LLM,我们只需要继承这个LLM即可:

class LLM(BaseLLM):

@abstractmethod
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
"""Run the LLM on the given prompt and input."""

其中,唯一一个必须要实现的方法就是_call,这个方法传入一个字符串和一些可选的stop word,然后返回LLM的输出即可。

另外还可以实现一个_identifying_params方法,用来输出自定义LLM的一些参数信息。

大家可以自行尝试和接入不同的LLM模型。

一些特殊的LLM

很多时候调用LLM是需要收费的,如果我们在开发的过程中也要不断的消耗token肯定是得不偿失。

所以langchain为了给我们省钱,提供了一个FakeLLM来使用。

顾名思义,FakeLLM就是可以手动来mock一些LLM的回答,方便测试。

from langchain.llms.fake import FakeListLLM

responses = ["窗前明月光\n低头鞋两双"]
llm = FakeListLLM(responses=responses)

print(llm("给我写首诗"))

上面的输出结果如下:

窗前明月光
低头鞋两双

langchain中还有一个和FakeLLM类似的叫做HumanInputLLM。

这个LLM可以打印出给用户的prompt,并且将用户的输入作为输出返回给用户,大家可以自行体验。

LLM的高级用法

除了正常的LLM调用之外,langchain还提供了一些LLM的高级用法。

异步调用

比如异步调用LLM。当然目前只支持OpenAI, PromptLayerOpenAI, ChatOpenAI 和 Anthropic这几个LLM。其他的对LLM的支持貌似正在开发中。

异步方法也很简单,主要是调用llm的agenerate方法,比如下面这样:

async def async_generate(llm):
resp = await llm.agenerate(["Hello, how are you?"])
print(resp.generations[0][0].text)

缓存功能

另外,对于一些重复的请求来说,langchain还提供了缓存功能,这样可以重复的请求就不需要再发送到LLM去了,给我们节约了时间和金钱,非常好用。

langchain提供的cache也有很多种,比如InMemoryCache,FullLLMCache,SQLAlchemyCache,SQLiteCache和RedisCache等等。

我们以InMemoryCache为例,看看是怎么使用的:

from langchain.cache import InMemoryCache
langchain.llm_cache = InMemoryCache()

# 第一次没有使用缓存
llm.predict("Tell me a joke")
# 第二次使用了缓存
llm.predict("Tell me a joke")

使用起来很简单,只需要添加一行llm_cache即可。

如果你使用其他的cache,除了构造函数不同之外,其他的都是类似的。

保存LLM配置

有时候我们配置好了LLM之外,还可以把LLM相关的参数以文本的形式存储起来。

保存llm到文件:

llm.save("llm.json")

加载llm:

llm = load_llm("llm.json")

流式处理

LLM的速度是一个硬伤,由于返回整个响应的速度太慢了,所以推出了流式响应。只要有response返回,就传输给用户。并不需要等待所有内容都获得之后再处理。这样对用户的体验是最好的。

目前langchain只支持OpenAI,ChatOpenAI和ChatAnthropic。

要实现这个流式处理, langchain提供了BaseCallbackHandler,我们只需要继承这个类,实现on_llm_new_token这个方法即可。

当然langchain已经给我们提供了一个实现好的类叫做:StreamingStdOutCallbackHandler。下面是他的实现:

    def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
sys.stdout.write(token)
sys.stdout.flush()

使用的时候,只需要在构建llm的是传入对应的callback即可:

from langchain.llms import OpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler


llm = OpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()], temperature=0)
resp = llm("给我写首诗")

统计token数目

这个统计token使用数目的功能目前只能在openai使用。

from langchain.llms import OpenAI
from langchain.callbacks import get_openai_callback

llm = OpenAI(model_name="text-davinci-002", n=2, best_of=2)

with get_openai_callback() as cb:
result = llm("T给我写首诗")
print(cb)

总结

LLM是大语言模型最基础的模式,chat模式的底层就是基于LLM实现的。后续我们会详细介绍chat模式,尽请期待。

更多内容请参考 www.flydean.com

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!


点我查看更多精彩内容:www.flydean.com关注公众号加我好友
Loading Comments...