java并发和多线程面试题(三)
77. 什么是死锁?如何避免死锁?
回答: 死锁是指多个线程因为互相等待对方释放锁而陷入无限等待的状态。死锁通常涉及多个资源和多个线程。
可以通过以下几种方法来避免死锁:
-
按照固定顺序获取锁: 线程按照相同的顺序获取锁,降低死锁的概率。
-
设置超时时间: 如果线程无法获取到锁,可以设置一个超时时间,超时后释放已经获取的锁。
-
使用tryLock()方法: 使用tryLock()方法来尝试获取锁,如果无法获取则放弃已经获取的锁。
-
使用Lock接口的tryLock()方法: 使用Lock接口的tryLock()方法来尝试获取多个锁,如果无法获取所有锁,则释放已经获取的锁。
78. 什么是线程调度算法?常见的线程调度算法有哪些?
回答: 线程调度算法是操作系统用于决定哪个线程在某一时刻运行的策略。常见的线程调度算法包括:
-
先来先服务(FCFS): 按照线程的到达顺序进行调度。
-
短作业优先(SJF): 优先调度执行时间最短的线程。
-
优先级调度: 按照线程的优先级进行调度,高优先级的线程会先执行。
-
时间片轮转(Round Robin): 每个线程分配一个时间片,在时间片内执行,然后切换到下一个线程。
-
多级反馈队列(Multilevel Feedback Queue): 根据线程的历史行为调整优先级,提高响应时间。
79. 什么是并发编程中的风险和挑战?
回答: 并发编程中存在以下风险和挑战:
-
竞态条件(Race Condition): 多个线程竞争共享资源,导致数据不一致。
-
死锁: 多个线程相互等待对方释放锁而陷入无限等待。
-
线程安全性问题: 多个线程同时访问共享资源,导致数据不一致。
-
内存一致性问题: 多个线程在不同的CPU缓存中读写共享变量,导致数据不一致。
-
上下文切换开销: 线程频繁切换导致性能下降。
-
复杂性增加: 并发编程增加了代码的复杂性和调试难度。
为了应对这些风险和挑战,需要合理地设计并发方案,使用适当的同步机制,进行充分的测试和调优。
80. 什么是线程的活跃性问题?有哪些类型的活跃性问题?
回答: 线程的活跃性问题是指在多线程环境下,线程无法正常执行或无法继续执行的问题。常见的线程活跃性问题包括:
-
死锁: 多个线程相互等待对方释放锁。
-
活锁: 多个线程反复尝试某个操作,但始终无法继续执行。
-
饥饿: 某些线程无法获取到资源,一直无法执行。
-
无限循环: 线程陷入无限循环,无法退出。
为了避免线程的活跃性问题,需要合理地设计同步机制,避免长时间占用锁,以及进行充分的测试和调试。
81. 什么是ABA问题?如何使用AtomicStampedReference解决ABA问题?
回答: ABA问题是一种在无锁编程中出现的问题,指在多线程环境 下,一个值先变成了A,然后变成了B,最后又变回了A,而线程可能无法察觉这个变化。这可能导致某些操作在判断值相等时出现误判。
AtomicStampedReference是Java并发包中提供的一种解决ABA问题的工具。它通过引入版本号(Stamp)来解决问题,即除了比较引用值外,还需要比较版本号是否匹配。
代码示例:
import java.util.concurrent.atomic.AtomicStampedReference;
public class ABAProblemSolution {
public static void main(String[] args) {
AtomicStampedReference<Integer> atomicStampedRef = new AtomicStampedReference<>(1, 0);
int stamp = atomicStampedRef.getStamp(); // 获取初始版本号
Thread thread1 = new Thread(() -> {
atomicStampedRef.compareAndSet(1, 2, stamp, stamp + 1); // A -> B
atomicStampedRef.compareAndSet(2, 1, stamp + 1, stamp + 2); // B -> A
});
Thread thread2 = new Thread(() -> {
int expectedStamp = atomicStampedRef.getStamp();
int expectedValue = atomicStampedRef.getReference();
try {
Thread.sleep(1000); // 等待线程1执行完成
} catch (InterruptedException e) {
e.printStackTrace();
}
boolean success = atomicStampedRef.compareAndSet(expectedValue, 3, expectedStamp, expectedStamp + 1);
System.out.println("Thread 2 update: " + success);
});
thread1.start();
thread2.start();
}
}
82. 如何使用Fork-Join框架实现任务的并行处理?
回答: Fork-Join框架是Java并发包中的一个工具,用于实现任务的并行处理。它基于“分而治之”的思想,将大任务分割成小任务,然后并行处理小任务,最后合并结果。
使用Fork-Join框架,需要继承RecursiveTask(有返回结果)或RecursiveAction(无返回结果),并实现compute()方法来处理任务。
代码示例:
import java.util.concurrent.RecursiveTask;
import java.util.concurrent.ForkJoinPool;
public class ForkJoinExample {
static class SumTask extends RecursiveTask<Long> {
private final int[] array;
private final int start;
private final int end;
SumTask(int[] array, int start, int end) {
this.array = array;
this.start = start;
this.end = end;
}
@Override
protected Long compute() {
if (end - start <= 100) { // 阈值,小于等于100个元素时直接计算
long sum = 0;
for (int i = start; i < end; i++) {
sum += array[i];
}
return sum;
} else { // 大于100个元素时分割任务
int middle = (start + end) / 2;
SumTask leftTask = new SumTask(array, start, middle);
SumTask rightTask = new SumTask(array, middle, end);
leftTask.fork();
rightTask.fork();
return leftTask.join() + rightTask.join();
}
}
}
public static void main(String[] args) {
ForkJoinPool forkJoinPool = new ForkJoinPool();
int[] array = new int[1000];
for (int i = 0; i < array.length; i++) {
array[i] = i + 1;
}
long result = forkJoinPool.invoke(new SumTask(array, 0, array.length));
System.out.println("Sum: " + result);
}
}
83. 什么是并行流和并行计算?如何使用Java中的Stream进行并行计算?
回答: 并行流是Java 8引入的一种特性,可以在多核处理器上并行处理流中的数据。并行流将数据分成多个部分,分别在多个线程上进行处理,从而提高处理速度。
使用并行流,只需将流对象通过parallel()方法转换为并行流,然后进行流操作 即可。
代码示例:
import java.util.Arrays;
import java.util.List;
public class ParallelStreamExample {
public static void main(String[] args) {
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
int sum = numbers.parallelStream()
.filter(n -> n % 2 == 0) // 过滤偶数
.mapToInt(Integer::intValue) // 转换为int类型
.sum();
System.out.println("Sum of even numbers: " + sum);
}
}
84. 什么是Java中的线程组(ThreadGroup)?它有何作用?
回答: 线程组(ThreadGroup)是Java中用于组织和管理线程的一种机制。线程组允许将线程划分为多个组,方便管理和控制。线程组可以嵌套,形成一个树状结构。
线程组的主要作用包括:
-
设置线程组的优先级。
-
设置线程组的非捕获异常处理器。
-
批量中断线程组中的所有线程。
-
方便统计和监控线程。
85. 如何实现线程间的协作和通信?
回答: 线程间的协作和通信可以通过以下方式实现:
-
共享变量: 多个线程共享一个变量,通过锁、信号量等同步机制来控制访问。
-
管道(Pipe): 通过一个线程向管道写入数据,另一个线程从管道读取数据,实现线程间通信。
-
阻塞队列: 使用阻塞队列作为共享数据结构,生产者线程往队列中放数据,消费者线程从队列中取数据。
-
条件变量(Condition): 使用Condition对象实现线程间的等待和通知。
-
信号量(Semaphore): 使用信 号量来控制对共享资源的访问。
-
线程间的信号: 使用wait()和notify()或notifyAll()来实现线程间的等待和通知。
86. 什么是线程池?如何创建和使用线程池?
回答: 线程池是一种管理和复用线程的机制,可以避免频繁地创建和销毁线程,从而提高程序的性能和资源利用率。Java中的线程池由Executor框架提供,主要有ThreadPoolExecutor实现。
可以通过Executors类提供的工厂方法来创建不同类型的线程池,如newFixedThreadPool()、newCachedThreadPool()和newScheduledThreadPool()等。
代码示例:
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class ThreadPoolExample {
public static void main(String[] args) {
ExecutorService executor = Executors.newFixedThreadPool(5);
for (int i = 0; i < 10; i++) {
final int taskNum = i;
executor.execute(() -> {
System.out.println("Executing task " + taskNum);
});
}
executor.shutdown();
}
}
87. 什么是线程池的核心线程数、最大线程数和工作队列?如何调整这些参数?
回答: 线程池的核心线程数是线程池中保持活动状态的线程数量,最大线程数是线程池允许的最大线程数量。工作队列是用来存储等待执行的任务的队列。
可以通过调用ThreadPoolExecutor的构造函数来创建自定义的线程池,并通过调整核心线程数、最大线程数和工作队列的容量来调整线程池的性能和行为。
88. 什么是线程池的拒绝策略?如何选择合适的拒绝策略?
回答: 线程池的拒绝策略是在线程池无法继续接受新任务时,决定如何处理新提交的任务。常见的拒绝策略有:
-
AbortPolicy(默认): 抛出RejectedExecutionException异常。
-
CallerRunsPolicy: 使用调用线程执行任务。
-
DiscardPolicy: 直接丢弃新提交的任务。
-
DiscardOldestPolicy: 丢弃队列中最老的任务。
可以根据实际需求选择合适的拒绝策略,或者实现自定义的拒绝策略。
89. 什么是线程池的预启动策略?如何使用预启动策略?
回答: 线程池的预启动策略是指在线程池创建后,提前创建一定数量的核心线程,并放入工作队列中,以缩短任务执行的启动时间。
可以通过调用prestartAllCoreThreads()方法来使用预启动策略,它会创建所有核心线程并放入工作队列中。
代码示例:
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class PrestartCoreThreadsExample {
public static void main(String[] args) {
ExecutorService executor = Executors.newFixedThreadPool(5);
((ThreadPoolExecutor) executor).prestartAllCoreThreads(); // 预启动所有核心线程
for (int i = 0; i < 10; i++) {
final int taskNum = i;
executor.execute(() -> {
System.out.println("Executing task " + taskNum);
});
}
executor.shutdown();
}
}
90. 什么是Fork-Join框架中的工作窃取(Work Stealing)?如何提高工作窃取的效率?
回答: 在Fork-Join框架中,工作窃取是指某个线程从其他线程的队列中偷取任务执行。当一个线程的队列为空时,它可以从其他线程的队列末尾偷取任务来执行,这可以提高线程的利用率和任务的分配均衡。
为了提高工作窃取的效率,可以将任务分成更小的子任务,以便更多的线程可以参与工作窃取。同时,可以避免过多地创建线程,以减少上下文切换的开销。
91. 什么是乐观锁和悲观锁?它们的区别是什么?
回答: 乐观锁和悲观锁是两种不同的并发控制策略。
-
乐观锁: 假设多个线程之间不会发生冲突,每个线程可以直接执行操作,但在更新时需要检查数据是否被其他线程修改过。如果被修改过,则重新尝试操作。
-
悲观锁: 假设多个线程之间会发生冲突,每个线程在操作前会获取锁,以防止其他线程同时修改数据。一旦线程获得锁,其他线程必须等待。
乐观锁通常使用版本号、时间戳等机制来实现,而悲观锁则使用锁机制,如Java中的synchronized和ReentrantLock。
92. 什么是CAS操作的ABA问题?如何使用版本号解决ABA问题?
回答: CAS(Compare and Swap)操作的ABA问题是指,一个值先从A变为B,然后再变回A,而在操作过程中可能有其他线程对这个值进行了修改。
使用版本号可以解决CAS操作的ABA问题。在每次更新时,不仅需要比较值是否相等,还需要比较版本号是否匹配。这样,即使值回到了A,但版本号已经发生了变化,其他线程仍可以正确识别出这种情况。
Java中的AtomicStampedReference可以用来解决ABA问题,它引入了版本号机制。
93. 什么是线程的上下文类加载器(Context Class Loader)?它有何作用?
回答: 线程的上下文类加载器是线程在加载类时使用的类加载器。Java中的类加载器有父子关系,类加载器之间可以形成一棵树状结构,但是线程上下文类加载器不一定遵循父子关系,可以根据实际情况进行设置。
上下文类加载器在多线程环境中非常有用,特别是在一些框架中,例如线程池中的线程可能无法访问正确的类路径。通过设置上下文类加载器,可以确保线程加载正确的类。
94. 什么是Java内存模型(Java Memory Model,JMM)?它是如何保证线程安全 的?
回答: Java内存模型(JMM)是一种规范,用于定义多线程程序中各个线程之间如何访问共享内存。JMM定义了各种操作的顺序和可见性,以及如何防止出现不正确的重排序。
JMM通过使用同步锁、volatile关键字、final关键字等来保证线程安全。同步锁可以确保多个线程之间的互斥访问,volatile关键字可以确保变量的可见性和禁止重排序,而final关键字可以确保不会出现对象被修改的情况。
95. 什么是线程安全性?如何评估一个类是否是线程安全的?
回答: 线程安全性是指在多线程环境下,对共享资源的访问和修改不会导致数据不一致或产生竞态条件。可以通过以下几个标准来评估一个类是否是线程安全的:
-
原子性(Atomicity): 方法的执行必须是原子的,要么全部执行完成,要么不执行。
-
可见性(Visibility): 修改后的值对其他线程必须是可见的,即读取到最新值。
-
有序性(Ordering): 程序执行的顺序必须与代码的顺序一致。
如果一个类满足以上三个条件,它就可以被认为是线程安全的。
96. 如何实现一个线程安全的单例模式?
回答: 实现线程安全的单例模式可以使用以下几种方式:
- 懒汉模式(Double-Checked Locking): 使用双重检查锁定,在首次获取实例时进行同步,以避免多次创建实例。
public class Singleton {
private static volatile Singleton instance;
private Singleton() {}
public static Singleton getInstance() {
if (instance == null) {
synchronized (Singleton.class) {
if (instance == null) {
instance = new Singleton();
}
}
}
return instance;
}
}
- 静态内部类: 利用静态内部类的加载机制,只有在调用getInstance()方法时才会加载内部类,从而实现懒加载。
public class Singleton {
private Singleton() {}
private static class SingletonHolder {
private static final Singleton INSTANCE = new Singleton();
}
public static Singleton getInstance() {
return SingletonHolder.INSTANCE;
}
}
- 枚举单例: 利用枚举类型的特性,保证只有一个实例。
public enum Singleton {
INSTANCE;
// 可以添加其他方法和属性
}
这些方法都可以实现线程安全的单例模式,根据实际需求选择合适的方法。