跳到主要内容

1. 数据分析实际案例之:pandas在泰坦尼特号乘客数据中的使用

简介

1912年4月15日,号称永不沉没的泰坦尼克号因为和冰山相撞沉没了。因为没有足够的救援设备,2224个乘客中有1502个乘客不幸遇难。事故已经发生了,但是我们可以从泰坦尼克号中的历史数据中发现一些数据规律吗?今天本文将会带领大家灵活的使用pandas来进行数据分析。

泰坦尼特号乘客数据

我们从kaggle官网中下载了部分泰坦尼特号的乘客数据,主要包含下面几个字段:

变量名含义取值
survival是否生还0 = No, 1 = Yes
pclass船票的级别1 = 1st, 2 = 2nd, 3 = 3rd
sex性别
Age年龄
sibsp配偶信息
parch父母或者子女信息
ticket船票编码
fare船费
cabin客舱编号
embarked登录的港口C = Cherbourg, Q = Queenstown, S = Southampton

下载下来的文件是一个csv文件。接下来我们来看一下怎么使用pandas来对其进行数据分析。

使用pandas对数据进行分析

引入依赖包

本文主要使用pandas和matplotlib,所以需要首先进行下面的通用设置:

from numpy.random import randn
import numpy as np
np.random.seed(123)
import os
import matplotlib.pyplot as plt
import pandas as pd
plt.rc('figure', figsize=(10, 6))
np.set_printoptions(precision=4)
pd.options.display.max_rows = 20

读取和分析数据

pandas提供了一个read_csv方法可以很方便的读取一个csv数据,并将其转换为DataFrame:

path = '../data/titanic.csv'
df = pd.read_csv(path)
df

我们看下读入的数据:

PassengerIdPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
08923Kelly, Mr. Jamesmale34.5003309117.8292NaNQ
18933Wilkes, Mrs. James (Ellen Needs)female47.0103632727.0000NaNS
28942Myles, Mr. Thomas Francismale62.0002402769.6875NaNQ
38953Wirz, Mr. Albertmale27.0003151548.6625NaNS
48963Hirvonen, Mrs. Alexander (Helga E Lindqvist)female22.011310129812.2875NaNS
58973Svensson, Mr. Johan Cervinmale14.00075389.2250NaNS
68983Connolly, Miss. Katefemale30.0003309727.6292NaNQ
78992Caldwell, Mr. Albert Francismale26.01124873829.0000NaNS
89003Abrahim, Mrs. Joseph (Sophie Halaut Easu)female18.00026577.2292NaNC
99013Davies, Mr. John Samuelmale21.020A/4 4887124.1500NaNS
....................................
40813003Riordan, Miss. Johanna Hannah""femaleNaN003349157.7208NaNQ
40913013Peacock, Miss. Treasteallfemale3.011SOTON/O.Q. 310131513.7750NaNS
41013023Naughton, Miss. HannahfemaleNaN003652377.7500NaNQ
41113031Minahan, Mrs. William Edward (Lillian E Thorpe)female37.0101992890.0000C78Q
41213043Henriksson, Miss. Jenny Lovisafemale28.0003470867.7750NaNS
41313053Spector, Mr. WoolfmaleNaN00A.5. 32368.0500NaNS
41413061Oliva y Ocana, Dona. Ferminafemale39.000PC 17758108.9000C105C
41513073Saether, Mr. Simon Sivertsenmale38.500SOTON/O.Q. 31012627.2500NaNS
41613083Ware, Mr. FrederickmaleNaN003593098.0500NaNS
41713093Peter, Master. Michael JmaleNaN11266822.3583NaNC

418 rows × 11 columns

调用df的describe方法可以查看基本的统计信息:

PassengerIdPclassAgeSibSpParchFare
count418.000000418.000000332.000000418.000000418.000000417.000000
mean1100.5000002.26555030.2725900.4473680.39234435.627188
std120.8104580.84183814.1812090.8967600.98142955.907576
min892.0000001.0000000.1700000.0000000.0000000.000000
25%996.2500001.00000021.0000000.0000000.0000007.895800
50%1100.5000003.00000027.0000000.0000000.00000014.454200
75%1204.7500003.00000039.0000001.0000000.00000031.500000
max1309.0000003.00000076.0000008.0000009.000000512.329200

如果要想查看乘客登录的港口,可以这样选择:

df['Embarked'][:10]
0    Q
1 S
2 Q
3 S
4 S
5 S
6 Q
7 S
8 C
9 S
Name: Embarked, dtype: object

使用value_counts 可以对其进行统计:

embark_counts=df['Embarked'].value_counts()
embark_counts[:10]
S    270
C 102
Q 46
Name: Embarked, dtype: int64

从结果可以看出,从S港口登录的乘客有270个,从C港口登录的乘客有102个,从Q港口登录的乘客有46个。

同样的,我们可以统计一下age信息:

age_counts=df['Age'].value_counts()
age_counts.head(10)

前10位的年龄如下:

24.0    17
21.0 17
22.0 16
30.0 15
18.0 13
27.0 12
26.0 12
25.0 11
23.0 11
29.0 10
Name: Age, dtype: int64

计算一下年龄的平均数:

df['Age'].mean()
30.272590361445783

实际上有些数据是没有年龄的,我们可以使用平均数对其填充:

clean_age1 = df['Age'].fillna(df['Age'].mean())
clean_age1.value_counts()

可以看出平均数是30.27,个数是86。

30.27259    86
24.00000 17
21.00000 17
22.00000 16
30.00000 15
18.00000 13
26.00000 12
27.00000 12
25.00000 11
23.00000 11
..
36.50000 1
40.50000 1
11.50000 1
34.00000 1
15.00000 1
7.00000 1
60.50000 1
26.50000 1
76.00000 1
34.50000 1
Name: Age, Length: 80, dtype: int64

使用平均数来作为年龄可能不是一个好主意,还有一种办法就是丢弃平均数:

clean_age2=df['Age'].dropna()
clean_age2
age_counts = clean_age2.value_counts()
ageset=age_counts.head(10)
ageset
24.0    17
21.0 17
22.0 16
30.0 15
18.0 13
27.0 12
26.0 12
25.0 11
23.0 11
29.0 10
Name: Age, dtype: int64

图形化表示和矩阵转换

图形化对于数据分析非常有帮助,我们对于上面得出的前10名的age使用柱状图来表示:

import seaborn as sns
sns.barplot(x=ageset.index, y=ageset.values)

接下来我们来做一个复杂的矩阵变换,我们先来过滤掉age和sex都为空的数据:

cframe=df[df.Age.notnull() & df.Sex.notnull()]
cframe
PassengerIdPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
08923Kelly, Mr. Jamesmale34.5003309117.8292NaNQ
18933Wilkes, Mrs. James (Ellen Needs)female47.0103632727.0000NaNS
28942Myles, Mr. Thomas Francismale62.0002402769.6875NaNQ
38953Wirz, Mr. Albertmale27.0003151548.6625NaNS
48963Hirvonen, Mrs. Alexander (Helga E Lindqvist)female22.011310129812.2875NaNS
58973Svensson, Mr. Johan Cervinmale14.00075389.2250NaNS
68983Connolly, Miss. Katefemale30.0003309727.6292NaNQ
78992Caldwell, Mr. Albert Francismale26.01124873829.0000NaNS
89003Abrahim, Mrs. Joseph (Sophie Halaut Easu)female18.00026577.2292NaNC
99013Davies, Mr. John Samuelmale21.020A/4 4887124.1500NaNS
....................................
40312951Carrau, Mr. Jose Pedromale17.00011305947.1000NaNS
40412961Frauenthal, Mr. Isaac Geraldmale43.0101776527.7208D40C
40512972Nourney, Mr. Alfred (Baron von Drachstedt")"male20.000SC/PARIS 216613.8625D38C
40612982Ware, Mr. William Jefferymale23.0102866610.5000NaNS
40712991Widener, Mr. George Duntonmale50.011113503211.5000C80C
40913013Peacock, Miss. Treasteallfemale3.011SOTON/O.Q. 310131513.7750NaNS
41113031Minahan, Mrs. William Edward (Lillian E Thorpe)female37.0101992890.0000C78Q
41213043Henriksson, Miss. Jenny Lovisafemale28.0003470867.7750NaNS
41413061Oliva y Ocana, Dona. Ferminafemale39.000PC 17758108.9000C105C
41513073Saether, Mr. Simon Sivertsenmale38.500SOTON/O.Q. 31012627.2500NaNS

332 rows × 11 columns

接下来使用groupby对age和sex进行分组:

by_sex_age = cframe.groupby(['Age', 'Sex'])
by_sex_age.size()
Age    Sex   
0.17 female 1
0.33 male 1
0.75 male 1
0.83 male 1
0.92 female 1
1.00 female 3
2.00 female 1
male 1
3.00 female 1
5.00 male 1
..
60.00 female 3
60.50 male 1
61.00 male 2
62.00 male 1
63.00 female 1
male 1
64.00 female 2
male 1
67.00 male 1
76.00 female 1
Length: 115, dtype: int64

使用unstack将Sex的列数据变成行:

Sexfemalemale
Age
0.171.00.0
0.330.01.0
0.750.01.0
0.830.01.0
0.921.00.0
1.003.00.0
2.001.01.0
3.001.00.0
5.000.01.0
6.000.03.0
.........
58.001.00.0
59.001.00.0
60.003.00.0
60.500.01.0
61.000.02.0
62.000.01.0
63.001.01.0
64.002.01.0
67.000.01.0
76.001.00.0

79 rows × 2 columns

我们把同样age的人数加起来,然后使用argsort进行排序,得到排序过后的index:

indexer = agg_counts.sum(1).argsort()
indexer.tail(10)
Age
58.0 37
59.0 31
60.0 29
60.5 32
61.0 34
62.0 22
63.0 38
64.0 27
67.0 26
76.0 30
dtype: int64

从agg_counts中取出最后的10个,也就是最大的10个:

count_subset = agg_counts.take(indexer.tail(10))
count_subset=count_subset.tail(10)
count_subset
Sexfemalemale
Age
29.05.05.0
25.01.010.0
23.05.06.0
26.04.08.0
27.04.08.0
18.07.06.0
30.06.09.0
22.010.06.0
21.03.014.0
24.05.012.0

上面的操作可以简化为下面的代码:

agg_counts.sum(1).nlargest(10)
Age
21.0 17.0
24.0 17.0
22.0 16.0
30.0 15.0
18.0 13.0
26.0 12.0
27.0 12.0
23.0 11.0
25.0 11.0
29.0 10.0
dtype: float64

将count_subset 进行stack操作,方便后面的画图:

stack_subset = count_subset.stack()
stack_subset
Age   Sex   
29.0 female 5.0
male 5.0
25.0 female 1.0
male 10.0
23.0 female 5.0
male 6.0
26.0 female 4.0
male 8.0
27.0 female 4.0
male 8.0
18.0 female 7.0
male 6.0
30.0 female 6.0
male 9.0
22.0 female 10.0
male 6.0
21.0 female 3.0
male 14.0
24.0 female 5.0
male 12.0
dtype: float64
stack_subset.name = 'total'
stack_subset = stack_subset.reset_index()
stack_subset
AgeSextotal
029.0female5.0
129.0male5.0
225.0female1.0
325.0male10.0
423.0female5.0
523.0male6.0
626.0female4.0
726.0male8.0
827.0female4.0
927.0male8.0
1018.0female7.0
1118.0male6.0
1230.0female6.0
1330.0male9.0
1422.0female10.0
1522.0male6.0
1621.0female3.0
1721.0male14.0
1824.0female5.0
1924.0male12.0

作图如下:

sns.barplot(x='total', y='Age', hue='Sex',  data=stack_subset)

本文例子可以参考: https://github.com/ddean2009/learn-ai/


点我查看更多精彩内容:www.flydean.com关注公众号加我好友
Loading Comments...